# Introduction aux filtres analogiques

### 1. Généralités, filtres élémentaires

### 1.1 Préambule

Pour des raisons multiples l'information utile peut être dissimulée au sein d'un signal complexe. Dès lors que le spectre de l'information est suffisamment isolé vis à vis des composantes indésirables, il est possible de l'extraire par filtrage.

Le filtrage en fréquence fut historiquement l'une des premières fonctions utilisées en radioélectricité. Aujourd'hui, on trouve des filtres dans de nombreux équipements électroniques. La tendance est actuellement de remplacer les structures analogiques par des versions numériques, de caractéristiques plus précises et plus reproductibles. On conserve cependant des solutions analogiques en électronique de puissance, en électroacoustique et dans les systèmes haute fréquence.

D'une manière générale, un filtre est un système linéaire dont le rôle est de modifier la composition spectrale d'un signal sans y ajouter de nouvelles composantes. Il permet le renforcement ou l'atténuation d'une ou plusieurs bandes de fréquences.

### 1.2 Filtres idéaux

Le cas idéal est un filtrage qui élimine totalement les bandes indésirables sans transition et sans introduire de déphasage dans les bandes conservées (Figure 1).

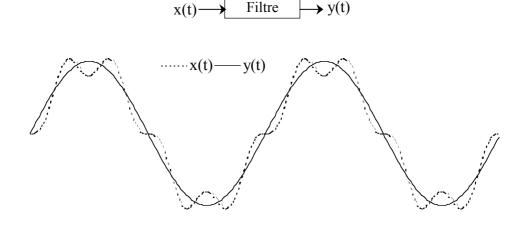



Figure 1. Filtrage idéal d'une composante fréquentielle

Selon la bande rejetée, on rencontre les 4 grandes catégories de filtres décrites en Figure 2.

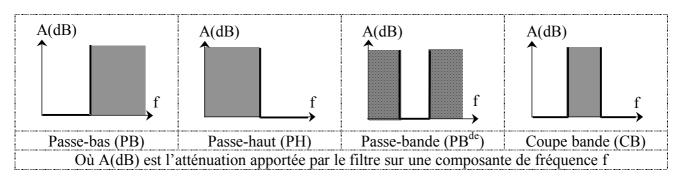



Figure 2. Les 4 catégories de filtres idéaux

#### 1.3 Filtres réels

# a) Equation différentielle

En pratique il n'est pas possible d'atteindre parfaitement les performances précédentes. Comme tout système linéaire, un filtre obéit à une équation différentielle linéaire du type (1)

$$a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_m \frac{d^m x(t)}{dt^m} + \dots + b_1 \frac{dx(t)}{dt} + b_0 x(t)$$

$$a_n; \dots; b_m \text{ sont des coefficients réels}$$
(1)

Exemple : considérons le circuit R-L-C de la Figure 3

$$x(t) \xrightarrow{R} \xrightarrow{L} y(t)$$

Figure 3. Circuit R-L-C

On peut écrire :

$$x(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt} + y(t)$$

$$i(t) = C \cdot \frac{dy(t)}{dt}$$

$$\Rightarrow LC \frac{d^2y(t)}{dt^2} + LC \frac{dy(t)}{dt} + y(t) = x(t)$$

# Revenons au cas général

En régime harmonique permanent, le signal d'entrée s'écrit  $x(t) = X_0 \sin(\omega t)$ La solution de l'équation (1) est du type  $y(t) = Y_0 \sin(\omega t + \varphi)$ 

Le rapport  $\frac{Y_o}{X_o}$  exprime l'action du filtre sur l'amplitude et  $\phi$  représente le déphasage introduit par le filtre sur la composante de pulsation  $\omega$  (Figure 4).

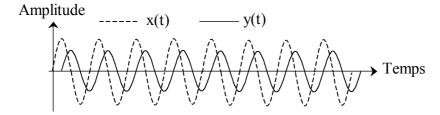



Figure 4. Effet d'un filtre réel

# b) Fonction de transfert

Une des propriétés intéressantes de la transformation de Laplace est de transformer une fonction dérivée en une expression algébrique.

En notant F(p) la transformée de Laplace d'une fonction f(t), p étant une variable complexe, la transformée de la fonction dérivée  $\frac{d^n f(t)}{dt^n}$  s'écrit  $p^n F(p)$  lorsque l'on ne tient pas compte des conditions initiales.

L'application de cette propriété aux deux membres de l'équation différentielle (1) aboutit à la relation (2)

$$Y(p)[a_{n}p^{n} + \dots + a_{0}] = X(p)[b_{m}p^{m} + \dots + b_{0}]$$
(2)

On définit alors la fonction de transfert par le rapport (3)

$$H(p) = \frac{Y}{X}(p) = \frac{b_{m}p^{m} + \dots + b_{0}}{a_{n}p^{n} + \dots + a_{0}}$$
(3)

La réponse en régime harmonique du filtre s'obtient en substituant j $\omega$  à la variable p. Cette réponse est une fonction complexe qui s'écrit :

$$H(j\omega) = \frac{b_m(j\omega)^m + \dots + b_0}{a_n(j\omega)^n + \dots + a_0}$$
(4)

Le module de  $H(j\omega)$  est une fraction rationnelle en  $\omega$ . Cela interdit des discontinuités en fréquence sur des bandes complètes.

# c) Normalisation de l'unité de fréquence

Il est souvent pratique de normaliser l'unité de fréquence en posant  $F = \frac{f}{f_{ref}}$  où  $f_{ref}$  est une valeur particulière; par exemple la fréquence de coupure  $(f_p)$  pour les filtres PB et PH, la fréquence centrale  $(f_0)$  pour les PB<sup>de</sup> et CB.

On associe à cette normalisation la variable de Laplace réduite  $s = \frac{p}{\omega_{ref}}$  où  $\omega_{ref} = 2\pi f_{ref}$ 

# d) Retard de phase $(t_{\varphi})$ et retard de groupe $(t_{g})$

L'argument de  $H(j\omega)$  représente le déphasage  $\varphi(\omega)$  en régime harmonique permanent entre la sortie et l' entrée.

$$x(t)=\sin(\omega t)$$
  $\Rightarrow$   $y(t)=|H(j\omega)|\sin(\omega t + \varphi) = |H(j\omega)|\sin[\omega(t-t\varphi)]$   
avec  $\varphi(\omega)$  = argument  $H(j\omega)$ 

Le retard de phase est lié au déphasage par la relation (5)

$$t_{\varphi} = -\frac{\varphi(\omega)}{\omega} \tag{5}$$

Le signal d'entrée n'étant pas forcément une sinusoïde pure, il est intéressant de connaître le temps mis par l'énergie du signal pour atteindre la sortie. Cette durée, appelée retard de groupe, obéit à l'équation différentielle (6).

$$t_{g} = -\frac{d\varphi(\omega)}{d\omega} \tag{6}$$

On veillera à ne pas la confondre avec le retard de phase  $t_{\phi}$ . La Figure 5 illustre la différence entre les retards de phase et de groupe.

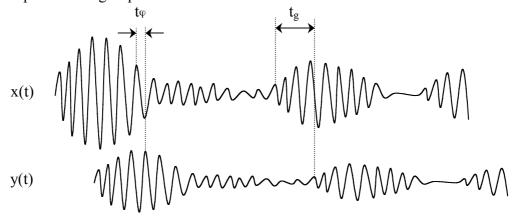
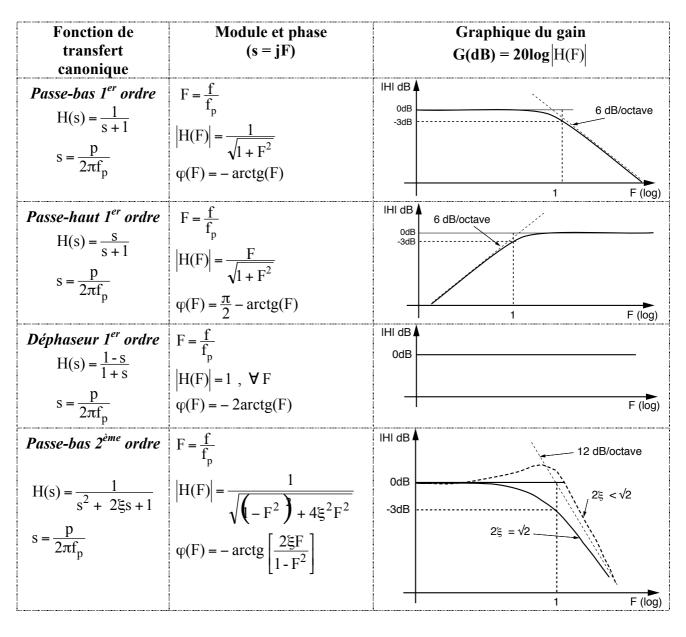




Figure 5. Définition graphique des retards de phase et de groupe

Pour que  $t_g$  soit constant, il faut que  $\phi(\omega)$  soit une fonction linéaire de  $\omega$ . En pratique, cette situation n'est pas obtenue car  $\phi(\omega)$  est une fonction arctangente d'une fraction rationnelle en  $\omega$ . C'est pourquoi, même si la bande passante du filtre est supérieure au spectre du signal d'entrée, celui-ci sera déformé en sortie car ses différentes composantes traversent le filtre avec des durées inégales. Les filtres analogiques qui présentent le retard de groupe le plus constant dans la bande passante s'appuient sur les polynômes de Bessel.

#### 1.4 Fonction de transfert des filtres élémentaires

Nous résumons dans le Tableau 1 les fonctions de transfert et réponses en fréquence associées, des filtres élémentaires du 1<sup>er</sup> et 2<sup>ème</sup> ordre.



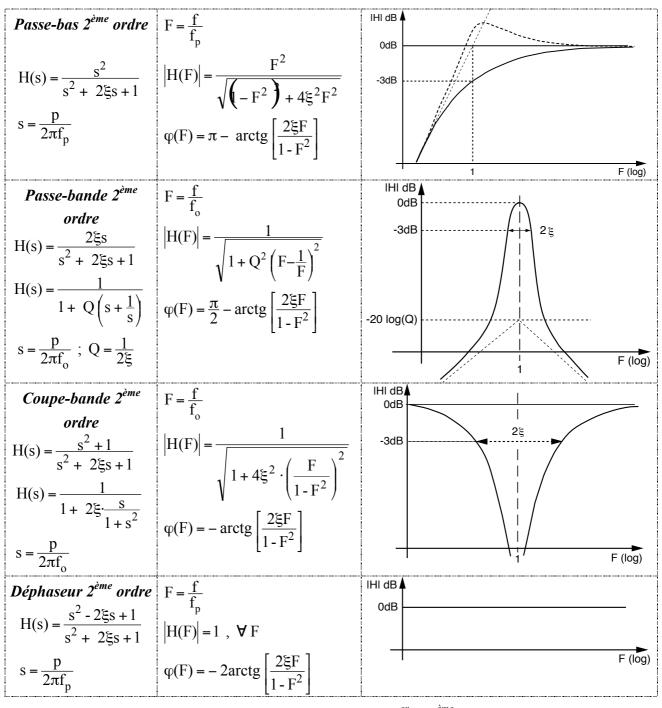



Tableau 1. Filtres élémentaires du 1<sup>er</sup> et 2<sup>ème</sup> ordre

#### Notes:

- le paramètre ξ est le facteur d'amortissement; il doit être positif pour assurer la stabilité du filtre;
- -pour les filtres passe-bande, 2ξ représente la bande passante relative à -3 dB;
- -pour les filtres coupe-bande, 2ξ représente la bande rejetée relative à -3 dB;
- le paramètre  $Q = \frac{1}{2\xi}$  est appelé facteur de qualité pour les filtre passe-bande et coupe-bande.

### 2. Structures de filtrage actives usuelles

Pour réaliser les filtres précédents, il est pratique d'utiliser des structures actives à base d'amplificateurs opérationnels. Ces structures utilisent uniquement des résistances et des condensateurs ce qui permet de s'affranchir des éléments selfiques.

Le Tableau 2 donne les structures actives les plus courantes.

|                                                      | Filtre simple                                                     | Structure de<br>Sallen Key                                 | Structure<br>de Rauch                                                                                                                                         | Structure à quadripôles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | $Z_1$ $V_e$ $V_s$                                                 | Y <sub>1</sub> Y <sub>2</sub> + V <sub>s</sub>             | $Y_4$ $Y_5$ $Y_4$ $Y_5$ $Y_6$ $Y_2$ $Y_8$                                                                                                                     | $\frac{\alpha}{\varepsilon C} \frac{\alpha}{\varepsilon C} \frac{R}{\varepsilon C} \frac{R}{\alpha} \frac{R}{R\varepsilon^2} \frac{C}{\varepsilon} \frac{C}{\varepsilon} \frac{C}{\varepsilon} \frac{C}{\varepsilon} \frac{C}{\varepsilon} \frac{R}{R\varepsilon^2}$ $\frac{R\varepsilon}{V_e} \frac{R}{2} \frac{R}{2} \frac{R}{V_s} \frac{R}{\varepsilon} \frac$ |
| Fonction de transfert $H(p) = \frac{V_s}{V_e}$       | $H(p) = -\frac{Z_2}{Z_1}$                                         | $H(p) = \frac{Y_1 Y_2}{Y_1 Y_{2+} Y_{3}(Y_1 + Y_2 + Y_4)}$ | $H(p) = \frac{Y_1 Y_3}{Y_5 (Y_1 + Y_2 + Y_3 + Y_4) + Y_4 Y_3}$                                                                                                | $H(p) = -\frac{1 + \alpha R^2 C^2 p^2}{1 + 2\epsilon R C p + R^2 C^2 p^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1<br>1 + as                                          | $Z_1 \qquad Z_2 \qquad Z_2 \qquad R_2$                            |                                                            |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{\frac{s}{a}}{1 + \frac{s}{a}}$                | $ \begin{array}{ccc} R_1 & C & R_2 \\ Z_1 & & & Z_2 \end{array} $ |                                                            |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{1}{as^2 + bs + 1}$                            |                                                                   |                                                            | $Y_{1} = Y_{3} = \frac{1}{R} \qquad Y_{5} = C_{2}p$ $Y_{4} = \frac{1}{R} \qquad Y_{2} = C_{1}p$ $H(p) = -\frac{1}{R^{2}C_{1}C_{2}p^{2} + 3RC_{2}p + 1}$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{s_{ a }^2}{\frac{s^2}{a} + \frac{b}{a}s + 1}$ |                                                                   |                                                            | $Y_1 = Y_3 = Cp 	 Y_5 = \frac{1}{R_2}$ $Y_4 = Cp 	 Y_2 = \frac{1}{R_1}$ $H(p) = -\frac{R_1 R_2 C^2 p^2}{R_1 R_2 C^2 p^2 + 3R_1 Cp + 1}$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{\frac{B}{a}s}{s^2 + \frac{B}{a}s + 1}$        |                                                                   | Impossible avec une<br>structure à gain<br>unitaire        | $Y_{3} = \frac{1}{R} \qquad Y_{1} = C_{1}p$ $Y_{5} = C_{2}p \qquad Y_{2} = Y_{4} = \frac{1}{R}$ $H(p) = -\frac{RC_{1}p}{R^{2}C_{1}C_{2}p^{2} + 3RC_{2}p + 1}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{s^2 \Omega_{\infty}^{-2} + 1}{as^2 + bs + 1}$ |                                                                   |                                                            |                                                                                                                                                               | $\omega_{\text{ref}} = \frac{1}{RC}$ $\Omega_{\infty} = \frac{1}{\sqrt{\alpha}}$ $\xi = \varepsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Notes                                                | $s = \frac{p}{\omega_{\text{ref}}}$                               | Y : admittance Z : ii                                      | mpédance                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Tableau 2. Structures de filtrage actives courantes

# Bibliographie

Analyse et traitement des signaux - *Méthodes et applications au son et à l'image* E. TISSERAND, J.F. PAUTEX, P. SCHWEITZER Editions DUNOD – 2004.